Abstract:A deepfake is a photo or video of a person whose image has been digitally altered or partially replaced with an image of someone else. Deepfakes have the potential to cause a variety of problems and are often used maliciously. A common usage is altering videos of prominent political figures and celebrities. These deepfakes can portray them making offensive, problematic, and/or untrue statements. Current deepfakes can be very realistic, and when used in this way, can spread panic and even influence elections and political opinions. There are many deepfake detection strategies currently in use but finding the most comprehensive and universal method is critical. So, in this survey we will address the problems of malicious deepfake creation and the lack of universal deepfake detection methods. Our objective is to survey and analyze a variety of current methods and advances in the field of deepfake detection.
Abstract:In the past two decades, the number of mobile products being created by companies has grown exponentially. However, although these devices are constantly being upgraded with the newest features, the security measures used to protect these devices has stayed relatively the same over the past two decades. The vast difference in growth patterns between devices and their security is opening up the risk for more and more devices to easily become infiltrated by nefarious users. Working off of previous work in the field, this study looks at the different Machine Learning algorithms used in user authentication schemes involving touch dynamics and device movement. This study aims to give a comprehensive overview of the current uses of different machine learning algorithms that are frequently used in user authentication schemas involving touch dynamics and device movement. The benefits, limitations, and suggestions for future work will be thoroughly discussed throughout this paper.