Abstract:The promising outcomes of dynamical system identification techniques, such as SINDy [Brunton et al. 2016], highlight their advantages in providing qualitative interpretability and extrapolation compared to non-interpretable deep neural networks [Rudin 2019]. These techniques suffer from parameter updating in real-time use cases, especially when the system parameters are likely to change during or between processes. Recently, the OASIS [Bhadriraju et al. 2020] framework introduced a data-driven technique to address the limitations of real-time dynamical system parameters updating, yielding interesting results. Nevertheless, we show in this work that superior performance can be achieved using more advanced model architectures. We present an innovative encoding approach, based mainly on the use of Set Encoding methods of sequence data, which give accurate adaptive model identification for complex dynamic systems, with variable input time series length. Two Set Encoding methods are used, the first is Deep Set [Zaheer et al. 2017], and the second is Set Transformer [Lee et al. 2019]. Comparing Set Transformer to OASIS framework on Lotka Volterra for real-time local dynamical system identification and time series forecasting, we find that the Set Transformer architecture is well adapted to learning relationships within data sets. We then compare the two Set Encoding methods based on the Lorenz system for online global dynamical system identification. Finally, we trained a Deep Set model to perform identification and characterization of abnormalities for 1D heat-transfer problem.
Abstract:We propose a parametric sampling strategy for the reduction of large-scale PDE systems with multidimensional input parametric spaces by leveraging models of different fidelity. The design of this methodology allows a user to adaptively sample points ad hoc from a discrete training set with no prior requirement of error estimators. It is achieved by exploiting low-fidelity models throughout the parametric space to sample points using an efficient sampling strategy, and at the sampled parametric points, high-fidelity models are evaluated to recover the reduced basis functions. The low-fidelity models are then adapted with the reduced order models ( ROMs) built by projection onto the subspace spanned by the recovered basis functions. The process continues until the low-fidelity model can represent the high-fidelity model adequately for all the parameters in the parametric space. Since the proposed methodology leverages the use of low-fidelity models to assimilate the solution database, it significantly reduces the computational cost in the offline stage. The highlight of this article is to present the construction of the initial low-fidelity model, and a sampling strategy based on the discrete empirical interpolation method (DEIM). We test this approach on a 2D steady-state heat conduction problem for two different input parameters and make a qualitative comparison with the classical greedy reduced basis method (RBM), and further test on a 9-dimensional parametric non-coercive elliptic problem and analyze the computational performance based on different tuning of greedy selection of points.