Abstract:Recurrent neural networks play an important role in both research and industry. With the advent of quantum machine learning, the quantisation of recurrent neural networks has become recently relevant. We propose fully quantum recurrent neural networks, based on dissipative quantum neural networks, capable of learning general causal quantum automata. A quantum training algorithm is proposed and classical simulations for the case of product outputs with the fidelity as cost function are carried out. We thereby demonstrate the potential of these algorithms to learn complex quantum processes with memory in terms of the exemplary delay channel, the time evolution of quantum states governed by a time-dependent Hamiltonian, and high- and low-frequency noise mitigation. Numerical simulations indicate that our quantum recurrent neural networks exhibit a striking ability to generalise from small training sets.
Abstract:Neural networks enjoy widespread success in both research and industry and, with the imminent advent of quantum technology, it is now a crucial challenge to design quantum neural networks for fully quantum learning tasks. Here we propose the use of quantum neurons as a building block for quantum feed-forward neural networks capable of universal quantum computation. We describe the efficient training of these networks using the fidelity as a cost function and provide both classical and efficient quantum implementations. Our method allows for fast optimisation with reduced memory requirements: the number of qudits required scales with only the width, allowing the optimisation of deep networks. We benchmark our proposal for the quantum task of learning an unknown unitary and find remarkable generalisation behaviour and a striking robustness to noisy training data.