Abstract:Solving multiple parametrised related systems is an essential component of many numerical tasks. Borrowing strength from the solved systems and learning will make this process faster. In this work, we propose a novel probabilistic linear solver over the parameter space. This leverages information from the solved linear systems in a regression setting to provide an efficient posterior mean and covariance. We advocate using this as companion regression model for the preconditioned conjugate gradient method, and discuss the favourable properties of the posterior mean and covariance as the initial guess and preconditioner. We also provide several design choices for this companion solver. Numerical experiments showcase the benefits of using our novel solver in a hyperparameter optimisation problem.
Abstract:Gaussian processes are notorious for scaling cubically with the size of the training set, preventing application to very large regression problems. Computation-aware Gaussian processes (CAGPs) tackle this scaling issue by exploiting probabilistic linear solvers to reduce complexity, widening the posterior with additional computational uncertainty due to reduced computation. However, the most commonly used CAGP framework results in (sometimes dramatically) conservative uncertainty quantification, making the posterior unrealistic in practice. In this work, we prove that if the utilised probabilistic linear solver is calibrated, in a rigorous statistical sense, then so too is the induced CAGP. We thus propose a new CAGP framework, CAGP-GS, based on using Gauss-Seidel iterations for the underlying probabilistic linear solver. CAGP-GS performs favourably compared to existing approaches when the test set is low-dimensional and few iterations are performed. We test the calibratedness on a synthetic problem, and compare the performance to existing approaches on a large-scale global temperature regression problem.