Abstract:Proper recitation of the Quran, adhering to the rules of Tajweed, is crucial for preventing mistakes during recitation and requires significant effort to master. Traditional methods of teaching these rules are limited by the availability of qualified instructors and time constraints. Automatic evaluation of recitation can address these challenges by providing prompt feedback and supporting independent practice. This study focuses on developing a deep learning model to classify three Tajweed rules - separate stretching (Al Mad), tight noon (Ghunnah), and hide (Ikhfaa) - using the publicly available QDAT dataset, which contains over 1,500 audio recordings. The input data consisted of audio recordings from this dataset, transformed into normalized mel-spectrograms. For classification, the EfficientNet-B0 architecture was used, enhanced with a Squeeze-and-Excitation attention mechanism. The developed model achieved accuracy rates of 95.35%, 99.34%, and 97.01% for the respective rules. An analysis of the learning curves confirmed the model's robustness and absence of overfitting. The proposed approach demonstrates high efficiency and paves the way for developing interactive educational systems for Tajweed study.
Abstract:Deep neural networks (DNNs) with a step-by-step introduction of inputs, which is constructed by imitating the somatosensory system in human body, known as SpinalNet have been implemented in this work on a Galaxy Zoo dataset. The input segmentation in SpinalNet has enabled the intermediate layers to take some of the inputs as well as output of preceding layers thereby reducing the amount of the collected weights in the intermediate layers. As a result of these, the authors of SpinalNet reported to have achieved in most of the DNNs they tested, not only a remarkable cut in the error but also in the large reduction of the computational costs. Having applied it to the Galaxy Zoo dataset, we are able to classify the different classes and/or sub-classes of the galaxies. Thus, we have obtained higher classification accuracies of 98.2, 95 and 82 percents between elliptical and spirals, between these two and irregulars, and between 10 sub-classes of galaxies, respectively.