Abstract:Automatic visual inspection using machine learning-based methods plays a key role in achieving zero-defect policies in industry. Research on anomaly detection approaches is constrained by the availability of datasets that represent complex defect appearances and imperfect imaging conditions, which are typical to industrial processes. Recent benchmarks indicate that most publicly available datasets are biased towards optimal imaging conditions, leading to an overestimation of the methods' applicability to real-world industrial scenarios. To address this gap, we introduce the Industrial Screen Printing Anomaly Detection dataset (ISP-AD). It presents challenging small and weakly contrasted surface defects embedded within structured patterns exhibiting high permitted design variability. To the best of our knowledge, it is the largest publicly available industrial dataset to date, including both synthetic and real defects collected directly from the factory floor. In addition to the evaluation of defect detection performance of recent unsupervised anomaly detection methods, experiments on a mixed supervised training approach, incorporating both synthesized and real defects, were conducted. Even small amounts of injected real defects prove beneficial for model generalization. Furthermore, starting from training on purely synthetic defects, emerging real defective samples can be efficiently integrated into subsequent scalable training. Research findings indicate that supervision by means of both synthetic and accumulated real defects can complement each other, meeting demanded industrial inspection requirements such as low false positive rates and high recall. The presented unsupervised and supervised dataset splits are designed to emphasize research on unsupervised, self-supervised, and supervised approaches, enhancing their applicability to industrial settings.
Abstract:Automated surface inspection is an important task in many manufacturing industries and often requires machine learning driven solutions. Supervised approaches, however, can be challenging, since it is often difficult to obtain large amounts of labeled training data. In this work, we instead perform one-class unsupervised learning on fault-free samples by training a deep convolutional neural network to complete images whose center regions are cut out. Since the network is trained exclusively on fault-free data, it completes the image patches with a fault-free version of the missing image region. The pixel-wise reconstruction error within the cut out region is an anomaly image which can be used for anomaly detection. Results on surface images of decorated plastic parts demonstrate that this approach is suitable for detection of visible anomalies and moreover surpasses all other tested methods.