Abstract:Nowadays, Presentation Attack Detection is a very active research area. Several databases are constituted in the state-of-the-art using images extracted from videos. One of the main problems identified is that many databases present a low-quality, small image size and do not represent an operational scenario in a real remote biometric system. Currently, these images are captured from smartphones with high-quality and bigger resolutions. In order to increase the diversity of image quality, this work presents a new PAD database based on open-access Flickr images called: "Flickr-PAD". Our new hand-made database shows high-quality printed and screen scenarios. This will help researchers to compare new approaches to existing algorithms on a wider database. This database will be available for other researchers. A leave-one-out protocol was used to train and evaluate three PAD models based on MobileNet-V3 (small and large) and EfficientNet-B0. The best result was reached with MobileNet-V3 large with BPCER10 of 7.08% and BPCER20 of 11.15%.
Abstract:Non-referential face image quality assessment methods have gained popularity as a pre-filtering step on face recognition systems. In most of them, the quality score is usually designed with face matching in mind. However, a small amount of work has been done on measuring their impact and usefulness on Presentation Attack Detection (PAD). In this paper, we study the effect of quality assessment methods on filtering bona fide and attack samples, their impact on PAD systems, and how the performance of such systems is improved when training on a filtered (by quality) dataset. On a Vision Transformer PAD algorithm, a reduction of 20% of the training dataset by removing lower quality samples allowed us to improve the BPCER by 3% in a cross-dataset test.