Abstract:Resource-efficiently computing representations of probability distributions and the distances between them while only having access to the samples is a fundamental and useful problem across mathematical sciences. In this paper, we propose a generic algorithmic framework to estimate the PDF and CDF of any sub-Gaussian distribution while the samples from them arrive in a stream. We compute mergeable summaries of distributions from the stream of samples that require sublinear space w.r.t. the number of observed samples. This allows us to estimate Wasserstein and Total Variation (TV) distances between any two sub-Gaussian distributions while samples arrive in streams and from multiple sources (e.g. federated learning). Our algorithms significantly improves on the existing methods for distance estimation incurring super-linear time and linear space complexities. In addition, we use the proposed estimators of Wasserstein and TV distances to audit the fairness and privacy of the ML algorithms. We empirically demonstrate the efficiency of the algorithms for estimating these distances and auditing using both synthetic and real-world datasets.
Abstract:Testing whether a sample survey is a credible representation of the population is an important question to ensure the validity of any downstream research. While this problem, in general, does not have an efficient solution, one might take a task-based approach and aim to understand whether a certain data analysis tool, like linear regression, would yield similar answers both on the population and the sample survey. In this paper, we design an algorithm to test the credibility of a sample survey in terms of linear regression. In other words, we design an algorithm that can certify if a sample survey is good enough to guarantee the correctness of data analysis done using linear regression tools. Nowadays, one is naturally concerned about data privacy in surveys. Thus, we further test the credibility of surveys published in a differentially private manner. Specifically, we focus on Local Differential Privacy (LDP), which is a standard technique to ensure privacy in surveys where the survey participants might not trust the aggregator. We extend our algorithm to work even when the data analysis has been done using surveys with LDP. In the process, we also propose an algorithm that learns with high probability the guarantees a linear regression model on a survey published with LDP. Our algorithm also serves as a mechanism to learn linear regression models from data corrupted with noise coming from any subexponential distribution. We prove that it achieves the optimal estimation error bound for $\ell_1$ linear regression, which might be of broader interest. We prove the theoretical correctness of our algorithms while trying to reduce the sample complexity for both public and private surveys. We also numerically demonstrate the performance of our algorithms on real and synthetic datasets.