Abstract:We introduce an interpretable deep learning model for multivariate time series forecasting that prioritizes both predictive performance and interpretability - key requirements for understanding complex physical phenomena. Our model not only matches but often surpasses existing interpretability methods, achieving this without compromising accuracy. Through extensive experiments, we demonstrate its ability to identify the most relevant time series and lags that contribute to forecasting future values, providing intuitive and transparent explanations for its predictions. To minimize the need for manual supervision, the model is designed so one can robustly determine the optimal window size that captures all necessary interactions within the smallest possible time frame. Additionally, it effectively identifies the optimal model order, balancing complexity when incorporating higher-order terms. These advancements hold significant implications for modeling and understanding dynamic systems, making the model a valuable tool for applied and computational physicists.
Abstract:Using big data to analyze consumer behavior can provide effective decision-making tools for preventing customer attrition (churn) in customer relationship management (CRM). Focusing on a CRM dataset with several different categories of factors that impact customer heterogeneity (i.e., usage of self-care service channels, duration of service, and responsiveness to marketing actions), we provide new predictive analytics of customer churn rate based on a machine learning method that enhances the classification of logistic regression by adding a mixed penalty term. The proposed penalized logistic regression can prevent overfitting when dealing with big data and minimize the loss function when balancing the cost from the median (absolute value) and mean (squared value) regularization. We show the analytical properties of the proposed method and its computational advantage in this research. In addition, we investigate the performance of the proposed method with a CRM data set (that has a large number of features) under different settings by efficiently eliminating the disturbance of (1) least important features and (2) sensitivity from the minority (churn) class. Our empirical results confirm the expected performance of the proposed method in full compliance with the common classification criteria (i.e., accuracy, precision, and recall) for evaluating machine learning methods.