Abstract:The Extreme Learning Machine (ELM) is a growing statistical technique widely applied to regression problems. In essence, ELMs are single-layer neural networks where the hidden layer weights are randomly sampled from a specific distribution, while the output layer weights are learned from the data. Two of the key challenges with this approach are the architecture design, specifically determining the optimal number of neurons in the hidden layer, and the method's sensitivity to the random initialization of hidden layer weights. This paper introduces a new and enhanced learning algorithm for regression tasks, the Effective Non-Random ELM (ENR-ELM), which simplifies the architecture design and eliminates the need for random hidden layer weight selection. The proposed method incorporates concepts from signal processing, such as basis functions and projections, into the ELM framework. We introduce two versions of the ENR-ELM: the approximated ENR-ELM and the incremental ENR-ELM. Experimental results on both synthetic and real datasets demonstrate that our method overcomes the problems of traditional ELM while maintaining comparable predictive performance.
Abstract:We propose AFTNet, a novel network-constraint survival analysis method based on the Weibull accelerated failure time (AFT) model solved by a penalized likelihood approach for variable selection and estimation. When using the log-linear representation, the inference problem becomes a structured sparse regression problem for which we explicitly incorporate the correlation patterns among predictors using a double penalty that promotes both sparsity and grouping effect. Moreover, we establish the theoretical consistency for the AFTNet estimator and present an efficient iterative computational algorithm based on the proximal gradient descent method. Finally, we evaluate AFTNet performance both on synthetic and real data examples.
Abstract:We consider the problem of learning the link parameters as well as the structure of a binary-valued pairwise Markov model. We propose a method based on $l_1$- regularized logistic regression, which estimate globally the whole set of edges and link parameters. Unlike the more recent methods discussed in literature that learn the edges and the corresponding link parameters one node at a time, in this work we propose a method that learns all the edges and corresponding link parameters simultaneously for all nodes, in a global manner. The idea behind this proposal is to exploit the reciprocal information of the nodes between each other during the estimation process. Detailed numerical experiments highlight the advantage of this technique and confirm the intuition behind it.