Abstract:Bipolar modulation increases the achievable information rate of communication links with direct-detection receivers. This paper optimizes bipolar transmission with a modulator bias offset for short-reach fiber links. A neural network equalizer with successive interference cancellation is shown to gain over 100 Gbit/s compared to standard receivers.
Abstract:Neural networks (NNs) inspired by the forward-backward algorithm (FBA) are used as equalizers for bandlimited channels with a memoryless nonlinearity. The NN-equalizers are combined with successive interference cancellation (SIC) to approach the information rates of joint detection and decoding (JDD) with considerably less complexity than JDD and other existing equalizers. Simulations for short-haul optical fiber links with square-law detection illustrate the gains of NNs as compared to the complexity-limited FBA and Gibbs sampling.
Abstract:PAM-6 transmission is considered for short-reach fiber-optic links with intensity modulation and direct detection. Experiments show that probabilistically-shaped PAM-6 and a framed-cross QAM-32 constellation outperform conventional cross QAM-32 under a peak power constraint.
Abstract:Achievable information rates of bipolar 4- and 8-ary constellations are experimentally compared to those of intensity modulation (IM) when using an oversampled direct detection receiver. The bipolar constellations gain up to 1.8 dB over their IM counterparts.
Abstract:Dealing with nonlinear effects of the radio-frequency(RF) chain is a key issue in the realization of very large-scale multi-antenna (MIMO) systems. Achieving the remarkable gains possible with massive MIMO requires that the signal processing algorithms systematically take into account these effects. Here, we present a computationally efficient linear precoding method satisfying the requirements for low peak-to-average power ratio (PAPR) and low-resolution D/A-converters (DACs). The method is based on a sparse regularization of the precoding matrix and offers advantages in terms of precoded signal PAPR as well as processing complexity. Through simulation, we find that the method substantially improves conventional linear precoders.