Abstract:We study the relaxation of a highly collisional, ultracold but nondegenerate gas of polar molecules. Confined within a harmonic trap, the gas is subject to fluid-gaseous coupled dynamics that lead to a breakdown of first-order hydrodynamics. An attempt to treat these higher-order hydrodynamic effects was previously made with a Gaussian ansatz and coarse-graining model parameter [R. R. W. Wang & J. L. Bohn, Phys. Rev. A 108, 013322 (2023)], leading to an approximate set of equations for a few collective observables accessible to experiments. Here we present substantially improved reduced-order models for these same observables, admissible beyond previous parameter regimes, discovered directly from particle simulations using the WSINDy algorithm (Weak-form Sparse Identification of Nonlinear Dynamics). The interpretable nature of the learning algorithm enables estimation of previously unknown physical quantities and discovery of model terms with candidate physical mechanisms, revealing new physics in mixed collisional regimes. Our approach constitutes a general framework for data-driven model identification leveraging known physics.
Abstract:Species subject to predation and environmental threats commonly exhibit variable periods of population boom and bust over long timescales. Understanding and predicting such behavior, especially given the inherent heterogeneity and stochasticity of exogenous driving factors over short timescales, is an ongoing challenge. A modeling paradigm gaining popularity in the ecological sciences for such multi-scale effects is to couple short-term continuous dynamics to long-term discrete updates. We develop a data-driven method utilizing weak-form equation learning to extract such hybrid governing equations for population dynamics and to estimate the requisite parameters using sparse intermittent measurements of the discrete and continuous variables. The method produces a set of short-term continuous dynamical system equations parametrized by long-term variables, and long-term discrete equations parametrized by short-term variables, allowing direct assessment of interdependencies between the two time scales. We demonstrate the utility of the method on a variety of ecological scenarios and provide extensive tests using models previously derived for epizootics experienced by the North American spongy moth (Lymantria dispar dispar).