Abstract:Though larger vessels may be well-equipped to deal with wavy conditions, smaller vessels are often more susceptible to disturbances. This paper explores the development of a nonlinear model predictive control (NMPC) system for Uncrewed Surface Vessels (USVs) in wavy conditions to minimize average roll. The NMPC is based on a prediction method that uses information about the vessel's dynamics and an assumed wave model. This method is able to mitigate the roll of an under-actuated USV in a variety of conditions by adjusting the weights of the cost function. The results show a reduction of 39% of average roll with a tuned controller in conditions with 1.75-metre sinusoidal waves. A general and intuitive tuning strategy is established. This preliminary work is a proof of concept which sets the stage for the leveraging of wave prediction methodologies to perform planning and control in real time for USVs in real-world scenarios and field trials.