Abstract:This paper provides a review of the job recommender system (JRS) literature published in the past decade (2011-2021). Compared to previous literature reviews, we put more emphasis on contributions that incorporate the temporal and reciprocal nature of job recommendations. Previous studies on JRS suggest that taking such views into account in the design of the JRS can lead to improved model performance. Also, it may lead to a more uniform distribution of candidates over a set of similar jobs. We also consider the literature from the perspective of algorithm fairness. Here we find that this is rarely discussed in the literature, and if it is discussed, many authors wrongly assume that removing the discriminatory feature would be sufficient. With respect to the type of models used in JRS, authors frequently label their method as `hybrid'. Unfortunately, they thereby obscure what these methods entail. Using existing recommender taxonomies, we split this large class of hybrids into subcategories that are easier to analyse. We further find that data availability, and in particular the availability of click data, has a large impact on the choice of method and validation. Last, although the generalizability of JRS across different datasets is infrequently considered, results suggest that error scores may vary across these datasets.
Abstract:Given the vital importance of search engines to find digital information, there has been much scientific attention on how users interact with search engines, and how such behavior can be modeled. Many models on user - search engine interaction, which in the literature are known as click models, come in the form of Dynamic Bayesian Networks. Although many authors have used the resemblance between the different click models to derive estimation procedures for these models, in particular in the form of expectation maximization (EM), still this commonly requires considerable work, in particular when it comes to deriving the E-step. What we propose in this paper, is that this derivation is commonly unnecessary: many existing click models can in fact, under certain assumptions, be optimized as they were Input-Output Hidden Markov Models (IO-HMMs), for which the forward-backward equations immediately provide this E-step. To arrive at that conclusion, we will present the Generalized Cascade Model (GCM) and show how this model can be estimated using the IO-HMM EM framework, and provide two examples of how existing click models can be mapped to GCM. Our GCM approach to estimating click models has also been implemented in the gecasmo Python package.