Abstract:We propose a practical framework for designing a physically consistent reconfigurable intelligent surface (RIS) to overcome the inefficiency of the conventional phase gradient approach. For a section of Cape Town and across three different coverage enhancement scenarios, we optimize the amplitude of the RIS reradiation modes using Sionna ray tracing and a gradient-based learning technique. We then determine the required RIS surface/sheet impedance given the desired amplitudes for the reradiation modes, design the corresponding unitcells, and validate the performance through full-wave numerical simulations using CST Microwave Studio. We further validate our approach by fabricating a RIS using the parallel plate waveguide technique and conducting experimental measurements that align with our theoretical predictions.