Abstract:We propose a method to represent bipartite networks using graph embeddings tailored to tackle the challenges of studying ecological networks, such as the ones linking plants and pollinators, where many covariates need to be accounted for, in particular to control for sampling bias. We adapt the variational graph auto-encoder approach to the bipartite case, which enables us to generate embeddings in a latent space where the two sets of nodes are positioned based on their probability of connection. We translate the fairness framework commonly considered in sociology in order to address sampling bias in ecology. By incorporating the Hilbert-Schmidt independence criterion (HSIC) as an additional penalty term in the loss we optimize, we ensure that the structure of the latent space is independent of continuous variables, which are related to the sampling process. Finally, we show how our approach can change our understanding of ecological networks when applied to the Spipoll data set, a citizen science monitoring program of plant-pollinator interactions to which many observers contribute, making it prone to sampling bias.