Abstract:Prior interpretability research studying narrow distributions has preliminarily identified self-repair, a phenomena where if components in large language models are ablated, later components will change their behavior to compensate. Our work builds off this past literature, demonstrating that self-repair exists on a variety of models families and sizes when ablating individual attention heads on the full training distribution. We further show that on the full training distribution self-repair is imperfect, as the original direct effect of the head is not fully restored, and noisy, since the degree of self-repair varies significantly across different prompts (sometimes overcorrecting beyond the original effect). We highlight two different mechanisms that contribute to self-repair, including changes in the final LayerNorm scaling factor (which can repair up to 30% of the direct effect) and sparse sets of neurons implementing Anti-Erasure. We additionally discuss the implications of these results for interpretability practitioners and close with a more speculative discussion on the mystery of why self-repair occurs in these models at all, highlighting evidence for the Iterative Inference hypothesis in language models, a framework that predicts self-repair.
Abstract:We present a single attention head in GPT-2 Small that has one main role across the entire training distribution. If components in earlier layers predict a certain token, and this token appears earlier in the context, the head suppresses it: we call this copy suppression. Attention Head 10.7 (L10H7) suppresses naive copying behavior which improves overall model calibration. This explains why multiple prior works studying certain narrow tasks found negative heads that systematically favored the wrong answer. We uncover the mechanism that the Negative Heads use for copy suppression with weights-based evidence and are able to explain 76.9% of the impact of L10H7 in GPT-2 Small. To the best of our knowledge, this is the most comprehensive description of the complete role of a component in a language model to date. One major effect of copy suppression is its role in self-repair. Self-repair refers to how ablating crucial model components results in downstream neural network parts compensating for this ablation. Copy suppression leads to self-repair: if an initial overconfident copier is ablated, then there is nothing to suppress. We show that self-repair is implemented by several mechanisms, one of which is copy suppression, which explains 39% of the behavior in a narrow task. Interactive visualisations of the copy suppression phenomena may be seen at our web app https://copy-suppression.streamlit.app/