Abstract:Causal models have proven extremely useful in offering formal representations of causal relationships between a set of variables. Yet in many situations, there are non-causal relationships among variables. For example, we may want variables $LDL$, $HDL$, and $TOT$ that represent the level of low-density lipoprotein cholesterol, the level of lipoprotein high-density lipoprotein cholesterol, and total cholesterol level, with the relation $LDL+HDL=TOT$. This cannot be done in standard causal models, because we can intervene simultaneously on all three variables. The goal of this paper is to extend standard causal models to allow for constraints on settings of variables. Although the extension is relatively straightforward, to make it useful we have to define a new intervention operation that $disconnects$ a variable from a causal equation. We give examples showing the usefulness of this extension, and provide a sound and complete axiomatization for causal models with constraints.
Abstract:Judea Pearl was the first to propose a definition of actual causation using causal models. A number of authors have suggested that an adequate account of actual causation must appeal not only to causal structure, but also to considerations of normality. In earlier work, we provided a definition of actual causation using extended causal models, which include information about both causal structure and normality. Extended causal models are potentially very complex. In this paper, we show how it is possible to achieve a compact representation of extended causal models.
Abstract:Recent work in psychology and experimental philosophy has shown that judgments of actual causation are often influenced by consideration of defaults, typicality, and normality. A number of philosophers and computer scientists have also suggested that an appeal to such factors can help deal with problems facing existing accounts of actual causation. This paper develops a flexible formal framework for incorporating defaults, typicality, and normality into an account of actual causation. The resulting account takes actual causation to be both graded and comparative. We then show how our account would handle a number of standard cases.
Abstract:We look more carefully at the modeling of causality using structural equations. It is clear that the structural equations can have a major impact on the conclusions we draw about causality. In particular, the choice of variables and their values can also have a significant impact on causality. These choices are, to some extent, subjective. We consider what counts as an appropriate choice. More generally, we consider what makes a model an appropriate model, especially if we want to take defaults into account, as was argued is necessary in recent work.