Abstract:The enormous progress in the field of artificial intelligence (AI) enables retail companies to automate their processes and thus to save costs. Thereby, many AI-based automation approaches are based on machine learning and computer vision. The realization of such approaches requires high-quality training data. In this paper, we describe the creation process of an annotated dataset that contains 1,034 images of single food products, taken under studio conditions, annotated with 5 class labels and 30 object detection labels, which can be used for product recognition and classification tasks. We based all images and labels on standards presented by GS1, a global non-profit organisation. The objective of our work is to support the development of machine learning models in the retail domain and to provide a reference process for creating the necessary training data.