Abstract:Deploying advanced imaging solutions to robotic and autonomous systems by mimicking human vision requires simultaneous acquisition of multiple fields of views, named the peripheral and fovea regions. Low-resolution peripheral field provides coarse scene exploration to direct the eye to focus to a highly resolved fovea region for sharp imaging. Among 3D computer vision techniques, Light Detection and Ranging (LiDAR) is currently considered at the industrial level for robotic vision. LiDAR is an imaging technique that monitors pulses of light at optical frequencies to sense the space and to recover three-dimensional ranging information. Notwithstanding the efforts on LiDAR integration and optimization, commercially available devices have slow frame rate and low image resolution, notably limited by the performance of mechanical or slow solid-state deflection systems. Metasurfaces (MS) are versatile optical components that can distribute the optical power in desired regions of space. Here, we report on an advanced LiDAR technology that uses ultrafast low FoV deflectors cascaded with large area metasurfaces to achieve large FoV and simultaneous peripheral and central imaging zones. This technology achieves MHz frame rate for 2D imaging, and up to KHz for 3D imaging, with extremely large FoV (up to 150{\deg}deg. on both vertical and horizontal scanning axes). The use of this disruptive LiDAR technology with advanced learning algorithms offers perspectives to improve further the perception capabilities and decision-making process of autonomous vehicles and robotic systems.