Abstract:Accurate and efficient 3D reconstruction of trees is crucial for forest resource assessments and management. Close-Range Photogrammetry (CRP) is commonly used for reconstructing forest scenes but faces challenges like low efficiency and poor quality. Recently, Novel View Synthesis (NVS) technologies, including Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS), have shown promise for 3D plant reconstruction with limited images. However, existing research mainly focuses on small plants in orchards or individual trees, leaving uncertainty regarding their application in larger, complex forest stands. In this study, we collected sequential images of forest plots with varying complexity and performed dense reconstruction using NeRF and 3DGS. The resulting point clouds were compared with those from photogrammetry and laser scanning. Results indicate that NVS methods significantly enhance reconstruction efficiency. Photogrammetry struggles with complex stands, leading to point clouds with excessive canopy noise and incorrectly reconstructed trees, such as duplicated trunks. NeRF, while better for canopy regions, may produce errors in ground areas with limited views. The 3DGS method generates sparser point clouds, particularly in trunk areas, affecting diameter at breast height (DBH) accuracy. All three methods can extract tree height information, with NeRF yielding the highest accuracy; however, photogrammetry remains superior for DBH accuracy. These findings suggest that NVS methods have significant potential for 3D reconstruction of forest stands, offering valuable support for complex forest resource inventory and visualization tasks.
Abstract:Three-dimensional (3D) reconstruction of trees has always been a key task in precision forestry management and research. Due to the complex branch morphological structure of trees themselves and the occlusions from tree stems, branches and foliage, it is difficult to recreate a complete three-dimensional tree model from a two-dimensional image by conventional photogrammetric methods. In this study, based on tree images collected by various cameras in different ways, the Neural Radiance Fields (NeRF) method was used for individual tree reconstruction and the exported point cloud models are compared with point cloud derived from photogrammetric reconstruction and laser scanning methods. The results show that the NeRF method performs well in individual tree 3D reconstruction, as it has higher successful reconstruction rate, better reconstruction in the canopy area, it requires less amount of images as input. Compared with photogrammetric reconstruction method, NeRF has significant advantages in reconstruction efficiency and is adaptable to complex scenes, but the generated point cloud tends to be noisy and low resolution. The accuracy of tree structural parameters (tree height and diameter at breast height) extracted from the photogrammetric point cloud is still higher than those of derived from the NeRF point cloud. The results of this study illustrate the great potential of NeRF method for individual tree reconstruction, and it provides new ideas and research directions for 3D reconstruction and visualization of complex forest scenes.