Abstract:Through the generalization of deep learning, the research community has addressed critical challenges in the network security domain, like malware identification and anomaly detection. However, they have yet to discuss deploying them on Internet of Things (IoT) devices for day-to-day operations. IoT devices are often limited in memory and processing power, rendering the compute-intensive deep learning environment unusable. This research proposes a way to overcome this barrier by bypassing feature engineering in the deep learning pipeline and using raw packet data as input. We introduce a feature engineering-less machine learning (ML) process to perform malware detection on IoT devices. Our proposed model, "Feature engineering-less-ML (FEL-ML)," is a lighter-weight detection algorithm that expends no extra computations on "engineered" features. It effectively accelerates the low-powered IoT edge. It is trained on unprocessed byte-streams of packets. Aside from providing better results, it is quicker than traditional feature-based methods. FEL-ML facilitates resource-sensitive network traffic security with the added benefit of eliminating the significant investment by subject matter experts in feature engineering.
Abstract:The generalization of deep learning has helped us, in the past, address challenges such as malware identification and anomaly detection in the network security domain. However, as effective as it is, scarcity of memory and processing power makes it difficult to perform these tasks in Internet of Things (IoT) devices. This research finds an easy way out of this bottleneck by depreciating the need for feature engineering and subsequent processing in machine learning techniques. In this study, we introduce a Featureless machine learning process to perform anomaly detection. It uses unprocessed byte streams of packets as training data. Featureless machine learning enables a low cost and low memory time-series analysis of network traffic. It benefits from eliminating the significant investment in subject matter experts and the time required for feature engineering.