Abstract:In this paper, we propose an interactive genetic algorithm for solving multi-objective combinatorial optimization problems under preference imprecision. More precisely, we consider problems where the decision maker's preferences over solutions can be represented by a parameterized aggregation function (e.g., a weighted sum, an OWA operator, a Choquet integral), and we assume that the parameters are initially not known by the recommendation system. In order to quickly make a good recommendation, we combine elicitation and search in the following way: 1) we use regret-based elicitation techniques to reduce the parameter space in a efficient way, 2) genetic operators are applied on parameter instances (instead of solutions) to better explore the parameter space, and 3) we generate promising solutions (population) using existing solving methods designed for the problem with known preferences. Our algorithm, called RIGA, can be applied to any multi-objective combinatorial optimization problem provided that the aggregation function is linear in its parameters and that a (near-)optimal solution can be efficiently determined for the problem with known preferences. We also study its theoretical performances: RIGA can be implemented in such way that it runs in polynomial time while asking no more than a polynomial number of queries. The method is tested on the multi-objective knapsack and traveling salesman problems. For several performance indicators (computation times, gap to optimality and number of queries), RIGA obtains better results than state-of-the-art algorithms.