Abstract:This essay examines how Generative AI (GenAI) is rapidly transforming design practices and how discourse often falls into over-simplified narratives that impede meaningful research and practical progress. We identify and deconstruct five prevalent "semantic stopsigns" -- reductive framings about GenAI in design that halt deeper inquiry and limit productive engagement. Reflecting upon two expert workshops at ACM conferences and semi-structured interviews with design practitioners, we analyze how these stopsigns manifest in research and practice. Our analysis develops mid-level knowledge that bridges theoretical discourse and practical implementation, helping designers and researchers interrogate common assumptions about GenAI in their own contexts. By recasting these stopsigns into more nuanced frameworks, we provide the design research community with practical approaches for thinking about and working with these emerging technologies.
Abstract:In this paper, we collect an anthology of 100 visual stories from authors who participated in our systematic creative process of improvised story-building based on image sequences. Following close reading and thematic analysis of our anthology, we present five themes that characterize the variations found in this creative visual storytelling process: (1) Narrating What is in Vision vs. Envisioning; (2) Dynamically Characterizing Entities/Objects; (3) Sensing Experiential Information About the Scenery; (4) Modulating the Mood; (5) Encoding Narrative Biases. In understanding the varied ways that people derive stories from images, we offer considerations for collecting story-driven training data to inform automatic story generation. In correspondence with each theme, we envision narrative intelligence criteria for computational visual storytelling as: creative, reliable, expressive, grounded, and responsible. From these criteria, we discuss how to foreground creative expression, account for biases, and operate in the bounds of visual storyworlds.