Abstract:Expert systems are effective tools for automatically identifying energy efficiency potentials in manufacturing, thereby contributing significantly to global climate targets. These systems analyze energy data, pinpoint inefficiencies, and recommend optimizations to reduce energy consumption. Beyond systematic approaches for developing expert systems, there is a pressing need for simple and rapid software implementation solutions. Expert system shells, which facilitate the swift development and deployment of expert systems, are crucial tools in this process. They provide a template that simplifies the creation and integration of expert systems into existing manufacturing processes. This paper provides a comprehensive comparison of existing expert system shells regarding their suitability for improving energy efficiency, highlighting significant gaps and limitations. To address these deficiencies, we introduce a novel expert system shell, implemented in Jupyter Notebook, that provides a flexible and easily integrable solution for expert system development.
Abstract:Against the backdrop of the European Union's commitment to achieve climate neutrality by 2050, efforts to improve energy efficiency are being intensified. The manufacturing industry is a key focal point of these endeavors due to its high final electrical energy demand, while simultaneously facing a growing shortage of skilled workers crucial for meeting established goals. Expert systems (ESs) offer the chance to overcome this challenge by automatically identifying potential energy efficiency improvements and thereby playing a significant role in reducing electricity consumption. This paper systematically reviews state-of-the-art approaches of ESs aimed at improving energy efficiency in industry, with a focus on manufacturing. The literature search yields 1692 results, of which 54 articles published between 1987 and 2023 are analyzed in depth. These publications are classified according to the system boundary, manufacturing type, application perspective, application purpose, ES type, and industry. Furthermore, we examine the structure, implementation, utilization, and development of ESs in this context. Through this analysis, the review reveals research gaps, pointing toward promising topics for future research.