Abstract:In an era where maritime infrastructures are crucial, advanced situational awareness solutions are increasingly important. The use of optical camera systems can allow real-time usage of maritime footage. This thesis presents an investigation into leveraging deep learning and computer vision to advance real-time ship recognition and georeferencing for the improvement of maritime situational awareness. A novel dataset, ShipSG, is introduced, containing 3,505 images and 11,625 ship masks with corresponding class and geographic position. After an exploration of state-of-the-art, a custom real-time segmentation architecture, ScatYOLOv8+CBAM, is designed for the NVIDIA Jetson AGX Xavier embedded system. This architecture adds the 2D scattering transform and attention mechanisms to YOLOv8, achieving an mAP of 75.46% and an 25.3 ms per frame, outperforming state-of-the-art methods by over 5%. To improve small and distant ship recognition in high-resolution images on embedded systems, an enhanced slicing mechanism is introduced, improving mAP by 8% to 11%. Additionally, a georeferencing method is proposed, achieving positioning errors of 18 m for ships up to 400 m away and 44 m for ships between 400 m and 1200 m. The findings are also applied in real-world scenarios, such as the detection of abnormal ship behaviour, camera integrity assessment and 3D reconstruction. The approach of this thesis outperforms existing methods and provides a framework for integrating recognized and georeferenced ships into real-time systems, enhancing operational effectiveness and decision-making for maritime stakeholders. This thesis contributes to the maritime computer vision field by establishing a benchmark for ship segmentation and georeferencing research, demonstrating the viability of deep-learning-based recognition and georeferencing methods for real-time maritime monitoring.
Abstract:We introduce a novel method for updating 3D geospatial models, specifically targeting occlusion removal in large-scale maritime environments. Traditional 3D reconstruction techniques often face problems with dynamic objects, like cars or vessels, that obscure the true environment, leading to inaccurate models or requiring extensive manual editing. Our approach leverages deep learning techniques, including instance segmentation and generative inpainting, to directly modify both the texture and geometry of 3D meshes without the need for costly reprocessing. By selectively targeting occluding objects and preserving static elements, the method enhances both geometric and visual accuracy. This approach not only preserves structural and textural details of map data but also maintains compatibility with current geospatial standards, ensuring robust performance across diverse datasets. The results demonstrate significant improvements in 3D model fidelity, making this method highly applicable for maritime situational awareness and the dynamic display of auxiliary information.