Abstract:This research paper presents an innovative ship detection system tailored for applications like maritime surveillance and ecological monitoring. The study employs YOLOv8 and repurposed U-Net, two advanced deep learning models, to significantly enhance ship detection accuracy. Evaluation metrics include Mean Average Precision (mAP), processing speed, and overall accuracy. The research utilizes the "Airbus Ship Detection" dataset, featuring diverse remote sensing images, to assess the models' versatility in detecting ships with varying orientations and environmental contexts. Conventional ship detection faces challenges with arbitrary orientations, complex backgrounds, and obscured perspectives. Our approach incorporates YOLOv8 for real-time processing and U-Net for ship instance segmentation. Evaluation focuses on mAP, processing speed, and overall accuracy. The dataset is chosen for its diverse images, making it an ideal benchmark. Results demonstrate significant progress in ship detection. YOLOv8 achieves an 88% mAP, excelling in accurate and rapid ship detection. U Net, adapted for ship instance segmentation, attains an 89% mAP, improving boundary delineation and handling occlusions. This research enhances maritime surveillance, disaster response, and ecological monitoring, exemplifying the potential of deep learning models in ship detection.