Abstract:As we deal with the effects of climate change and the increase of global atmospheric temperatures, the accurate tracking and prediction of ice layers within polar ice sheets grows in importance. Studying these ice layers reveals climate trends, how snowfall has changed over time, and the trajectory of future climate and precipitation. In this paper, we propose a machine learning model that uses adaptive, recurrent graph convolutional networks to, when given the amount of snow accumulation in recent years gathered through airborne radar data, predict historic snow accumulation by way of the thickness of deep ice layers. We found that our model performs better and with greater consistency than our previous model as well as equivalent non-temporal, non-geometric, and non-adaptive models.
Abstract:The precise tracking and prediction of polar ice layers can unveil historic trends in snow accumulation. In recent years, airborne radar sensors, such as the Snow Radar, have been shown to be able to measure these internal ice layers over large areas with a fine vertical resolution. In our previous work, we found that temporal graph convolutional networks perform reasonably well in predicting future snow accumulation when given temporal graphs containing deep ice layer thickness. In this work, we experiment with a graph attention network-based model and used it to predict more annual snow accumulation data points with fewer input data points on a larger dataset. We found that these large changes only very slightly negatively impacted performance.
Abstract:The accurate prediction and estimation of annual snow accumulation has grown in importance as we deal with the effects of climate change and the increase of global atmospheric temperatures. Airborne radar sensors, such as the Snow Radar, are able to measure accumulation rate patterns at a large-scale and monitor the effects of ongoing climate change on Greenland's precipitation and run-off. The Snow Radar's use of an ultra-wide bandwidth enables a fine vertical resolution that helps in capturing internal ice layers. Given the amount of snow accumulation in previous years using the radar data, in this paper, we propose a machine learning model based on recurrent graph convolutional networks to predict the snow accumulation in recent consecutive years at a certain location. We found that the model performs better and with more consistency than equivalent nongeometric and nontemporal models.