Abstract:Detailed analysis of seizure semiology, the symptoms and signs which occur during a seizure, is critical for management of epilepsy patients. Inter-rater reliability using qualitative visual analysis is often poor for semiological features. Therefore, automatic and quantitative analysis of video-recorded seizures is needed for objective assessment. We present GESTURES, a novel architecture combining convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to learn deep representations of arbitrarily long videos of epileptic seizures. We use a spatiotemporal CNN (STCNN) pre-trained on large human action recognition (HAR) datasets to extract features from short snippets (approx. 0.5 s) sampled from seizure videos. We then train an RNN to learn seizure-level representations from the sequence of features. We curated a dataset of seizure videos from 68 patients and evaluated GESTURES on its ability to classify seizures into focal onset seizures (FOSs) (N = 106) vs. focal to bilateral tonic-clonic seizures (TCSs) (N = 77), obtaining an accuracy of 98.9% using bidirectional long short-term memory (BLSTM) units. We demonstrate that an STCNN trained on a HAR dataset can be used in combination with an RNN to accurately represent arbitrarily long videos of seizures. GESTURES can provide accurate seizure classification by modeling sequences of semiologies.