Abstract:In a world burdened by air pollution, the integration of state-of-the-art sensor calibration techniques utilizing Quantum Computing (QC) and Machine Learning (ML) holds promise for enhancing the accuracy and efficiency of air quality monitoring systems in smart cities. This article investigates the process of calibrating inexpensive optical fine-dust sensors through advanced methodologies such as Deep Learning (DL) and Quantum Machine Learning (QML). The objective of the project is to compare four sophisticated algorithms from both the classical and quantum realms to discern their disparities and explore possible alternative approaches to improve the precision and dependability of particulate matter measurements in urban air quality surveillance. Classical Feed-Forward Neural Networks (FFNN) and Long Short-Term Memory (LSTM) models are evaluated against their quantum counterparts: Variational Quantum Regressors (VQR) and Quantum LSTM (QLSTM) circuits. Through meticulous testing, including hyperparameter optimization and cross-validation, the study assesses the potential of quantum models to refine calibration performance. Our analysis shows that: the FFNN model achieved superior calibration accuracy on the test set compared to the VQR model in terms of lower L1 loss function (2.92 vs 4.81); the QLSTM slightly outperformed the LSTM model (loss on the test set: 2.70 vs 2.77), despite using fewer trainable weights (66 vs 482).
Abstract:Quantum Kernel Estimation (QKE) is a technique based on leveraging a quantum computer to estimate a kernel function that is classically difficult to calculate, which is then used by a classical computer for training a Support Vector Machine (SVM). Given the high number of 2-local operators necessary for realizing a feature mapping hard to simulate classically, a high qubit connectivity is needed, which is not currently possible on superconducting devices. For this reason, neutral atom quantum computers can be used, since they allow to arrange the atoms with more freedom. Examples of neutral-atom-based QKE can be found in the literature, but they are focused on graph learning and use the analogue approach. In this paper, a general method based on the gate model is presented. After deriving 1-qubit and 2-qubit gates starting from laser pulses, a parameterized sequence for feature mapping on 3 qubits is realized. This sequence is then used to empirically compute the kernel matrix starting from a dataset, which is finally used to train the SVM. It is also shown that this process can be generalized up to N qubits taking advantage of the more flexible arrangement of atoms that this technology allows. The accuracy is shown to be high despite the small dataset and the low separation. This is the first paper that not only proposes an algorithm for explicitly deriving a universal set of gates but also presents a method of estimating quantum kernels on neutral atom devices for general problems using the gate model.