Abstract:This paper explores the idea of using redirective reconfigurable intelligent surfaces (RedRIS) to overcome many of the challenges associated with the conventional reflective RIS. We develop a framework for jointly optimizing the switching matrix of the lens-type RedRIS ports along with the active precoding matrix at the base station (BS) and the receive scaling factor. A joint non-convex optimization problem is formulated under the minimum mean-square error (MMSE) criterion with the aim to maximize the spectral efficiency of each user. In the single-cell scenario, the optimum active precoding matrix at the multi-antenna BS and the receive scaling factor are found in closed-form by applying Lagrange optimization, while the optimal switching matrix of the lens-type RedRIS is obtained by means of a newly developed alternating optimization algorithm. We then extend the framework to the multi-cell scenario with single-antenna base stations that are aided by the same lens-type RedRIS. We further present two methods for reducing the number of effective connections of the RedRIS ports that result in appreciable overhead savings while enhancing the robustness of the system. The proposed RedRIS-based schemes are gauged against conventional reflective RIS-aided systems under both perfect and imperfect channel state information (CSI). The simulation results show the superiority of the proposed schemes in terms of overall throughput while incurring much less control overhead.
Abstract:This paper develops a linear minimum mean-square error (LMMSE) channel estimator for single and multicarrier systems that takes advantage of the mutual coupling in antenna arrays. We model the mutual coupling through multiport networks and express the single-user multiple-input multiple-output (MIMO) communication channel in terms of the impedance and scattering parameters of the antenna arrays. We put forward a novel scattering description of the communication channel which requires only the scattering parameters of the arrays as well as the terminated far-field embedded antenna patterns. In multi-antenna single-carrier systems under frequency-flat channels, we show that neglecting the mutual coupling effects leads to inaccurate characterization of the channel and noise correlations. We also extend the analysis to frequency-selective multicarrier channels wherein we further demonstrate that the coupling between the antenna elements within each array increases the number of resolvable channel taps. Standard LMMSE estimators based on existing inaccurate channel models become sub-optimal when applied to the new physically consistent model. We hence develop a new LMMSE estimator that calibrates the coupling and optimally estimates the MIMO channel. It is shown that appropriately accounting for mutual coupling through the developed physically consistent model leads to remarkable performance improvements both in terms of channel estimation accuracy and achievable rate. We demonstrate those gains in a rich-scattering environment using a connected array of slot antennas both at the transmitter and receiver sides.