Abstract:The distance protection relays are used to determine the impedance based fault location according to the current and voltage magnitudes in the transmission lines. However, the fault location cannot be correctly detected in mixed transmission lines due to different characteristic impedance per unit length because the characteristic impedance of high voltage cable line is significantly different from overhead line. Thus, determinations of the fault section and location with the distance protection relays are difficult in the mixed transmission lines. In this study, 154 kV overhead transmission line and underground cable line are examined as the mixed transmission line for the distance protection relays. Phase to ground faults are created in the mixed transmission line. overhead line section and underground cable section are simulated by using PSCAD-EMTDC.The short circuit fault images are generated in the distance protection relay for the overhead transmission line and underground cable transmission line faults. The images include the R-X impedance diagram of the fault, and the R-X impedance diagram have been detected by applying image processing steps. Artificial neural network (ANN) and the regression methods are used for prediction of the fault location, and the results of image processing are used as the input parameters for the training process of ANN and the regression methods. The results of ANN and regression methods are compared to select the most suitable method at the end of this study for forecasting of the fault location in transmission lines.
Abstract:In order to transmit electrical energy in a continuous and quality manner, it is necessary to control it from the point of production to the point of consumption. Therefore, protection of transmission and distribution lines is essential at every stage from production to consumption. The main function of the protection relays in electrical installations should be deactivated as soon as possible in the event of short circuits in the system. The most important part of the system is energy transmission lines and distance protection relays that protect these lines. An accurate error location technique is required to make fast and efficient work. Transformer neutral point grounding in transmission lines affects the operation of the zero component current during the single phase to ground short circuit failure of a power system. Considering the relationship between the grounding system and protection systems, an appropriate grounding choice should be made. Artificial neural network (ANN) has been used in order to accurately locate short circuit faults in different grounding systems in transmission lines. Compared with support vector machines (SVM) for testing inside ANN The transmission line model is made in the PSCAD-EMTDC simulation program. Data sets were created by recording the image of the impedance change of the R-X impedance diagram of the distance protection relay in short circuit faults created in different grounding systems. The related focal points in the images are given as an introduction to different ANN models using feature extraction and image processing techniques and the ANN model with the highest fault location estimation accuracy was chosen.
Abstract:Overhead lines are generally used for electrical energy transmission. Also, XLPE underground cable lines are generally used in the city center and the crowded areas to provide electrical safety, so high voltage underground cable lines are used together with overhead line in the transmission lines, and these lines are called as the mixed lines. The distance protection relays are used to determine the impedance based fault location according to the current and voltage magnitudes in the transmission lines. However, the fault location cannot be correctly detected in mixed transmission lines due to different characteristic impedance per unit length because the characteristic impedance of high voltage cable line is significantly different from overhead line. Thus, determinations of the fault section and location with the distance protection relays are difficult in the mixed transmission lines. In this study, 154 kV overhead transmission line and underground cable line are examined as the mixed transmission line for the distance protection relays. Phase to ground faults are created in the mixed transmission line, and overhead line section and underground cable section are simulated by using PSCAD. The short circuit fault images are generated in the distance protection relay for the overhead transmission line and underground cable transmission line faults. The images include the RX impedance diagram of the fault, and the RX impedance diagram have been detected by applying image processing steps. The regression methods are used for prediction of the fault location, and the results of image processing are used as the input parameters for the training process of the regression methods. The results of regression methods are compared to select the most suitable method at the end of this study for forecasting of the fault location in transmission lines.