Abstract:This paper tackles the pressing challenge of mutagenicity prediction by introducing three ground-breaking approaches. First, it showcases the superior performance of 2D scattering coefficients extracted from molecular images, compared to traditional molecular descriptors. Second, it presents a hybrid approach that combines geometric graph scattering (GGS), Graph Isomorphism Networks (GIN), and machine learning models, achieving strong results in mutagenicity prediction. Third, it introduces a novel graph neural network architecture, MOLG3-SAGE, which integrates GGS node features into a fully connected graph structure, delivering outstanding predictive accuracy. Experimental results on the ZINC dataset demonstrate significant improvements, emphasizing the effectiveness of blending 2D and geometric scattering techniques with graph neural networks. This study illustrates the potential of GNNs and GGS for mutagenicity prediction, with broad implications for drug discovery and chemical safety assessment.
Abstract:In this paper, we present two novel methods in Network Intrusion Detection Systems (NIDS) using Graph Neural Networks (GNNs). The first approach, Scattering Transform with E-GraphSAGE (STEG), utilizes the scattering transform to conduct multi-resolution analysis of edge feature vectors. This provides a detailed representation that is essential for identifying subtle anomalies in network traffic. The second approach improves node representation by initiating with Node2Vec, diverging from standard methods of using uniform values, thereby capturing a more accurate and holistic network picture. Our methods have shown significant improvements in performance compared to existing state-of-the-art methods in benchmark NIDS datasets.
Abstract:In this paper, we present two novel methods in Network Intrusion Detection Systems (NIDS) using Graph Neural Networks (GNNs). The first approach, Scattering Transform with E-GraphSAGE (STEG), utilizes the scattering transform to conduct multi-resolution analysis of edge feature vectors. This provides a detailed representation that is essential for identifying subtle anomalies in network traffic. The second approach improves node representation by initiating with Node2Vec, diverging from standard methods of using uniform values, thereby capturing a more accurate and holistic network picture. Our methods have shown significant improvements in performance compared to existing state-of-the-art methods in benchmark NIDS datasets.
Abstract:This paper introduces a new method based on Deep Galerkin Methods (DGMs) for solving high-dimensional stochastic Mean Field Games (MFGs). We achieve this by using two neural networks to approximate the unknown solutions of the MFG system and forward-backward conditions. Our method is efficient, even with a small number of iterations, and is capable of handling up to 300 dimensions with a single layer, which makes it faster than other approaches. In contrast, methods based on Generative Adversarial Networks (GANs) cannot solve MFGs with non-separable Hamiltonians. We demonstrate the effectiveness of our approach by applying it to a traffic flow problem, which was previously solved using the Newton iteration method only in the deterministic case. We compare the results of our method to analytical solutions and previous approaches, showing its efficiency. We also prove the convergence of our neural network approximation with a single hidden layer using the universal approximation theorem.