Galgotias college of Engineering and Technology
Abstract:This research paper describes a realtime system for identifying American Sign Language (ASL) movements that employs modern computer vision and machine learning approaches. The suggested method makes use of the Mediapipe library for feature extraction and a Convolutional Neural Network (CNN) for ASL gesture classification. The testing results show that the suggested system can detect all ASL alphabets with an accuracy of 99.95%, indicating its potential for use in communication devices for people with hearing impairments. The proposed approach can also be applied to additional sign languages with similar hand motions, potentially increasing the quality of life for people with hearing loss. Overall, the study demonstrates the effectiveness of using Mediapipe and CNN for real-time sign language recognition, making a significant contribution to the field of computer vision and machine learning.
Abstract:One Class Slab Support Vector Machines (OCSSVM) have turned out to be better in terms of accuracy in certain classes of classification problems than the traditional SVMs and One Class SVMs or even other One class classifiers. This paper proposes fast training method for One Class Slab SVMs using an updated Sequential Minimal Optimization (SMO) which divides the multi variable optimization problem to smaller sub problems of size two that can then be solved analytically. The results indicate that this training method scales better to large sets of training data than other Quadratic Programming (QP) solvers.