Abstract:To address the problem of narrow recommendation ranges caused by an emphasis on prediction accuracy, serendipitous recommendations, which consider both usefulness and unexpectedness, have attracted attention. However, realizing serendipitous recommendations is challenging due to the varying proportions of usefulness and unexpectedness preferred by different users, which is influenced by their differing desires for knowledge. In this paper, we propose a method to estimate the proportion of usefulness and unexpectedness that each user desires based on their curiosity, and make recommendations that match this preference. The proposed method estimates a user's curiosity by considering both their long-term and short-term interests. Offline experiments were conducted using the MovieLens-1M dataset to evaluate the effectiveness of the proposed method. The experimental results demonstrate that our method achieves the same level of performance as state-of-the-art method while successfully providing serendipitous recommendations.