Abstract:This study proposes a simple architecture for Enterprise application for Large Language Models (LLMs) for role based security and NATO clearance levels. Our proposal aims to address the limitations of current LLMs in handling security and information access. The proposed architecture could be used while utilizing Retrieval-Augmented Generation (RAG) and fine tuning of Mixture of experts models (MoE). It could be used only with RAG, or only with MoE or with both of them. Using roles and security clearance level of the user, documents in RAG and experts in MoE are filtered. This way information leakage is prevented.
Abstract:Cases of diabetes and related diabetic retinopathy (DR) have been increasing at an alarming rate in modern times. Early detection of DR is an important problem since it may cause permanent blindness in the late stages. In the last two decades, many different approaches have been applied in DR detection. Reviewing academic literature shows that deep neural networks (DNNs) have become the most preferred approach for DR detection. Among these DNN approaches, Convolutional Neural Network (CNN) models are the most used ones in the field of medical image classification. Designing a new CNN architecture is a tedious and time-consuming approach. Additionally, training an enormous number of parameters is also a difficult task. Due to this reason, instead of training CNNs from scratch, using pre-trained models has been suggested in recent years as transfer learning approach. Accordingly, the present study as a review focuses on DNN and Transfer Learning based applications of DR detection considering 38 publications between 2015 and 2020. The published papers are summarized using 9 figures and 10 tables, giving information about 22 pre-trained CNN models, 12 DR data sets and standard performance metrics.
Abstract:Precise and reliable estimation of reference evapotranspiration (ET o ) is an essential for the irrigation and water resources management. ET o is difficult to predict due to its complex processes. This complexity can be solved using machine learning methods. This study investigates the performance of artificial neural network (ANN) and deep neural network (DNN) models for estimating daily ET o . Previously proposed ANN and DNN methods have been realized, and their performances have been compared. Six input data including maximum air temperature (T max ), minimum air temperature (T min ), solar radiation (R n ), maximum relative humidity (RH max ), minimum relative humidity (RH min ) and wind speed (U 2 ) are used from 4 meteorological stations (Adana, Aksaray, Isparta and Ni\u{g}de) during 1999-2018 in Turkey. The results have shown that our proposed DNN models achieves satisfactory accuracy for daily ET o estimation compared to previous ANN and DNN models. The best performance has been observed with the proposed model of DNN with SeLU activation function (P-DNN-SeLU) in Aksaray with coefficient of determination (R 2 ) of 0.9934, root mean square error (RMSE) of 0.2073 and mean absolute error (MAE) of 0.1590, respectively. Therefore, the P-DNN-SeLU model could be recommended for estimation of ET o in other climate zones of the world.
Abstract:In this letter, a novel weighted ensemble classifier is proposed that improves classification accuracy and minimizes the number of classifiers. Ensemble weight finding problem is modeled as a cost function with following terms: (a) a data fidelity term aiming to decrease misclassification rate, (b) a sparsity term aiming to decrease the number of classifiers, and (c) a non-negativity constraint on the weights of the classifiers. The proposed cost function is a non-convex and hard to solve; thus, convex relaxation techniques and novel approximations are employed to obtain a numerically efficient solution. The proposed method achieves better or similar performance compared to state-of-the art classifier ensemble methods, while using lower number of classifiers.