Abstract:Text summarization involves reducing extensive documents to short sentences that encapsulate the essential ideas. The goal is to create a summary that effectively conveys the main points of the original text. We spend a significant amount of time each day reading the newspaper to stay informed about current events both domestically and internationally. While reading newspapers enriches our knowledge, we sometimes come across unnecessary content that isn't particularly relevant to our lives. In this paper, we introduce a neural network model designed to summarize Bangla text into concise and straightforward paragraphs, aiming for greater stability and efficiency.
Abstract:The Internet has become an essential tool for people in the modern world. Humans, like all living organisms, have essential requirements for survival. These include access to atmospheric oxygen, potable water, protective shelter, and sustenance. The constant flux of the world is making our existence less complicated. A significant portion of the population utilizes online food ordering services to have meals delivered to their residences. Although there are numerous methods for ordering food, customers sometimes experience disappointment with the food they receive. Our endeavor was to establish a model that could determine if food is of good or poor quality. We compiled an extensive dataset of over 1484 online reviews from prominent food ordering platforms, including Food Panda and HungryNaki. Leveraging the collected data, a rigorous assessment of various deep learning and machine learning techniques was performed to determine the most accurate approach for predicting food quality. Out of all the algorithms evaluated, logistic regression emerged as the most accurate, achieving an impressive 90.91% accuracy. The review offers valuable insights that will guide the user in deciding whether or not to order the food.