Abstract:Consumer electronics used to follow the miniaturization trend described by Moore's Law. Despite increased processing power in Microcontroller Units (MCUs), MCUs used in the smallest appliances are still not capable of running even moderately big, state-of-the-art artificial neural networks (ANNs) especially in time-sensitive scenarios. In this work, we present a novel method called Scattered Online Inference (SOI) that aims to reduce the computational complexity of ANNs. SOI leverages the continuity and seasonality of time-series data and model predictions, enabling extrapolation for processing speed improvements, particularly in deeper layers. By applying compression, SOI generates more general inner partial states of ANN, allowing skipping full model recalculation at each inference.
Abstract:The real-time processing of time series signals is a critical issue for many real-life applications. The idea of real-time processing is especially important in audio domain as the human perception of sound is sensitive to any kind of disturbance in perceived signals, especially the lag between auditory and visual modalities. The rise of deep learning (DL) models complicated the landscape of signal processing. Although they often have superior quality compared to standard DSP methods, this advantage is diminished by higher latency. In this work we propose novel method for minimization of inference time latency and memory consumption, called Short-Term Memory Convolution (STMC) and its transposed counterpart. The main advantage of STMC is the low latency comparable to long short-term memory (LSTM) networks. Furthermore, the training of STMC-based models is faster and more stable as the method is based solely on convolutional neural networks (CNNs). In this study we demonstrate an application of this solution to a U-Net model for a speech separation task and GhostNet model in acoustic scene classification (ASC) task. In case of speech separation we achieved a 5-fold reduction in inference time and a 2-fold reduction in latency without affecting the output quality. The inference time for ASC task was up to 4 times faster while preserving the original accuracy.