Abstract:The thesis develops a view of design in a concept formation framework and outlines a language to describe both the object of the design and the process of designing. The unknown object at the outset of the design work may be seen as an unknown concept that the designer is to define. Throughout the process, she develops a description of this object by relating it to known concepts. The search stops when the designer is satisfied that the design specification is complete enough to satisfy the requirements from it once built. It is then a collection of propositions that all contribute towards defining the design object - a collection of sentences describing relationships between the object and known concepts. Also, the design process itself may be described by relating known concepts - by organizing known abilities into particular patterns of activation, or mobilization. In view of the demands posed to a language to use in this concept formation process, the framework of a Design Process Language (DPL) is developed. The basis for the language are linguistic categories that act as classes of relations used to combine concepts, containing relations used for describing process and object within the same general system, with some relations being process specific, others being object specific, and with the bulk being used both for process and object description. Another outcome is the distinction of modal relations, or relations describing futurity, possibility, willingness, hypothetical events, and the like. The design process almost always includes aspects such as these, and it is thus necessary for a language facilitating design process description to support such relationships to be constructed. The DPL is argued to be a foundation whereupon to build a language that can be used for enabling computers to be more useful - act more intelligently - in the design process.
Abstract:In April 2021 Stava bridge, a main bridge on E6 in Norway, was abruptly closed for traffic. A structural defect had seriously compromised the bridge structural integrity. The Norwegian Public Roads Administration (NPRA) closed it, made a temporary solution and reopened with severe traffic restrictions. The incident was alerted through what constitutes the bridge Digital Twin processing data from Internet of Things sensors. The solution was crucial in online and offline diagnostics, the case demonstrating the value of technologies to tackle emerging dangerous situations as well as acting preventively. A critical and rapidly developing damage was detected in time to stop the development, but not in time to avoid the incident altogether. The paper puts risk in a broader perspective for an organization responsible for highway infrastructure. It positions online monitoring and Digital Twins in the context of Risk- and Condition-Based Maintenance. The situation that arose at Stava bridge, and how it was detected, analyzed, and diagnosed during virtual inspection, is described. The case demonstrates how combining physics-based methods with Machine Learning can facilitate damage detection and diagnostics. A summary of lessons learnt, both from technical and organizational perspectives, as well as plans of future work, is presented.