Abstract:Soft robots have found extensive applications in the medical field, particularly in rehabilitation exercises, assisted grasping, and artificial organs. Despite significant advancements in simulating various components of the digestive system, the rectum has been largely neglected due to societal stigma. This study seeks to address this gap by developing soft circular muscle actuators (CMAs) and rectum models to replicate the defecation process. Using soft materials, both the rectum and the actuators were fabricated to enable seamless integration and attachment. We designed, fabricated, and tested three types of CMAs and compared them to the simulated results. A pneumatic system was employed to control the actuators, and simulated stool was synthesized using sodium alginate and calcium chloride. Experimental results indicated that the third type of actuator exhibited superior performance in terms of area contraction and pressure generation. The successful simulation of the defecation process highlights the potential of these soft actuators in biomedical applications, providing a foundation for further research and development in the field of soft robotics.
Abstract:Fecal incontinence (FI) is a significant health issue with various underlying causes. Research in this field is limited by social stigma and the lack of effective replication models. To address these challenges, we developed a sophisticated rectal simulator that integrates power, control, and data acquisition systems with soft pouch actuators. The system comprises four key subsystems: mechanical, electrical, pneumatic, and control and data acquisition. The mechanical subsystem utilizes common materials such as aluminum frames, wooden boards, and compact structural components to facilitate the installation and adjustment of electrical and control components. The electrical subsystem supplies power to regulators and sensors. The pneumatic system provides compressed air to actuators, enabling the simulation of FI. The control and data acquisition subsystem collects pressure data and regulates actuator movement. This comprehensive approach allows the robot to accurately replicate human defecation, managing various feces types including liquid, solid, and extremely solid. This innovation enhances our understanding of defecation and holds potential for advancing quality-of-life devices related to this condition.