Abstract:Introduction: Music generation is a complex task that has received significant attention in recent years, and deep learning techniques have shown promising results in this field. Objectives: While extensive work has been carried out on generating Piano and other Western music, there is limited research on generating classical Indian music due to the scarcity of Indian music in machine-encoded formats. In this technical paper, methods for generating classical Indian music, specifically tabla music, is proposed. Initially, this paper explores piano music generation using deep learning architectures. Then the fundamentals are extended to generating tabla music. Methods: Tabla music in waveform (.wav) files are pre-processed using the librosa library in Python. A novel Bi-LSTM with an Attention approach and a transformer model are trained on the extracted features and labels. Results: The models are then used to predict the next sequences of tabla music. A loss of 4.042 and MAE of 1.0814 are achieved with the Bi-LSTM model. With the transformer model, a loss of 55.9278 and MAE of 3.5173 are obtained for tabla music generation. Conclusion: The resulting music embodies a harmonious fusion of novelty and familiarity, pushing the limits of music composition to new horizons.
Abstract:Introduction: Video Quality Assessment (VQA) is one of the important areas of study in this modern era, where video is a crucial component of communication with applications in every field. Rapid technology developments in mobile technology enabled anyone to create videos resulting in a varied range of video quality scenarios. Objectives: Though VQA was present for some time with the classical metrices like SSIM and PSNR, the advent of machine learning has brought in new techniques of VQAs which are built upon Convolutional Neural Networks (CNNs) or Deep Neural Networks (DNNs). Methods: Over the past years various research studies such as the BVQA which performed video quality assessment of nature-based videos using DNNs exposed the powerful capabilities of machine learning algorithms. BVQA using DNNs explored human visual system effects such as content dependency and time-related factors normally known as temporal effects. Results: This study explores the sharpness effect on models like BVQA. Sharpness is the measure of the clarity and details of the video image. Sharpness typically involves analyzing the edges and contrast of the image to determine the overall level of detail and sharpness. Conclusion: This study uses the existing video quality databases such as CVD2014. A comparative study of the various machine learning parameters such as SRCC and PLCC during the training and testing are presented along with the conclusion.