Abstract:The goal of modern sequential recommender systems is often formulated in terms of next-item prediction. In this paper, we explore the applicability of generative transformer-based models for the Top-K sequential recommendation task, where the goal is to predict items a user is likely to interact with in the "near future". We explore commonly used autoregressive generation strategies, including greedy decoding, beam search, and temperature sampling, to evaluate their performance for the Top-K sequential recommendation task. In addition, we propose novel Reciprocal Rank Aggregation (RRA) and Relevance Aggregation (RA) generation strategies based on multi-sequence generation with temperature sampling and subsequent aggregation. Experiments on diverse datasets give valuable insights regarding commonly used strategies' applicability and show that suggested approaches improve performance on longer time horizons compared to widely-used Top-K prediction approach and single-sequence autoregressive generation strategies.
Abstract:Using a single tool to build and compare recommender systems significantly reduces the time to market for new models. In addition, the comparison results when using such tools look more consistent. This is why many different tools and libraries for researchers in the field of recommendations have recently appeared. Unfortunately, most of these frameworks are aimed primarily at researchers and require modification for use in production due to the inability to work on large datasets or an inappropriate architecture. In this demo, we present our open-source toolkit RePlay - a framework containing an end-to-end pipeline for building recommender systems, which is ready for production use. RePlay also allows you to use a suitable stack for the pipeline on each stage: Pandas, Polars, or Spark. This allows the library to scale computations and deploy to a cluster. Thus, RePlay allows data scientists to easily move from research mode to production mode using the same interfaces.
Abstract:Sequential recommender systems are an important and demanded area of research. Such systems aim to use the order of interactions in a user's history to predict future interactions. The premise is that the order of interactions and sequential patterns play an essential role. Therefore, it is crucial to use datasets that exhibit a sequential structure to evaluate sequential recommenders properly. We apply several methods based on the random shuffling of the user's sequence of interactions to assess the strength of sequential structure across 15 datasets, frequently used for sequential recommender systems evaluation in recent research papers presented at top-tier conferences. As shuffling explicitly breaks sequential dependencies inherent in datasets, we estimate the strength of sequential patterns by comparing metrics for shuffled and original versions of the dataset. Our findings show that several popular datasets have a rather weak sequential structure.
Abstract:Recently sequential recommendations and next-item prediction task has become increasingly popular in the field of recommender systems. Currently, two state-of-the-art baselines are Transformer-based models SASRec and BERT4Rec. Over the past few years, there have been quite a few publications comparing these two algorithms and proposing new state-of-the-art models. In most of the publications, BERT4Rec achieves better performance than SASRec. But BERT4Rec uses cross-entropy over softmax for all items, while SASRec uses negative sampling and calculates binary cross-entropy loss for one positive and one negative item. In our work, we show that if both models are trained with the same loss, which is used by BERT4Rec, then SASRec will significantly outperform BERT4Rec both in terms of quality and training speed. In addition, we show that SASRec could be effectively trained with negative sampling and still outperform BERT4Rec, but the number of negative examples should be much larger than one.