Abstract:Handling imbalance in class distribution when building a classifier over tabular data has been a problem of long-standing interest. One popular approach is augmenting the training dataset with synthetically generated data. While classical augmentation techniques were limited to linear interpolation of existing minority class examples, recently higher capacity deep generative models are providing greater promise. However, handling of imbalance in class distribution when building a deep generative model is also a challenging problem, that has not been studied as extensively as imbalanced classifier model training. We show that state-of-the-art deep generative models yield significantly lower-quality minority examples than majority examples. %In this paper, we start with the observation that imbalanced data training of generative models trained imbalanced dataset which under-represent the minority class. We propose a novel technique of converting the binary class labels to ternary class labels by introducing a class for the region where minority and majority distributions overlap. We show that just this pre-processing of the training set, significantly improves the quality of data generated spanning several state-of-the-art diffusion and GAN-based models. While training the classifier using synthetic data, we remove the overlap class from the training data and justify the reasons behind the enhanced accuracy. We perform extensive experiments on four real-life datasets, five different classifiers, and five generative models demonstrating that our method enhances not only the synthesizer performance of state-of-the-art models but also the classifier performance.
Abstract:The application of large-scale models in medical image segmentation demands substantial quantities of meticulously annotated data curated by experts along with high computational resources, both of which are challenges in resource-poor settings. In this study, we present the Medical Segment Anything Model with Galore MedSAGa where we adopt the Segment Anything Model (SAM) to achieve memory-efficient, few-shot medical image segmentation by applying Gradient Low-Rank Projection GaLore to the parameters of the image encoder of SAM. Meanwhile, the weights of the prompt encoder and mask decoder undergo full parameter fine-tuning using standard optimizers. We further assess MedSAGa's few-shot learning capabilities, reporting on its memory efficiency and segmentation performance across multiple standard medical image segmentation datasets. We compare it with several baseline models, including LoRA fine-tuned SAM (SAMed) and DAE-Former. Experiments across multiple datasets and these baseline models with different number of images for fine tuning demonstrated that the GPU memory consumption of MedSAGa is significantly less than that of the baseline models, achieving an average memory efficiency of 66% more than current state-of-the-art (SOTA) models for medical image segmentation. The combination of substantially lower memory requirements and comparable to SOTA results in few-shot learning for medical image segmentation positions MedSAGa as an optimal solution for deployment in resource-constrained settings.