Abstract:With recent advancements in AI and computation tools, intelligent paradigms emerged to empower different fields such as healthcare robots with new capabilities. Advanced AI robotic algorithms (e.g., reinforcement learning) can be trained and developed to autonomously make individual decisions to achieve a desired and usually fixed goal. However, such independent decisions and goal achievements might not be ideal for a healthcare robot that usually interacts with a dynamic end-user or a patient. In such a complex human-robot interaction (teaming) framework, the dynamic user continuously wants to be involved in decision-making as well as introducing new goals while interacting with their present environment in real-time. To address this challenge, an adaptive shared autonomy AI paradigm is required to be developed for the two interactive agents (Human & AI agents) with a foundation based on human-centered factors to avoid any possible ethical issues and guarantee no harm to humanity.
Abstract:There have been different reports of developing Brain-Computer Interface (BCI) platforms to investigate the noninvasive electroencephalography (EEG) signals associated with plan-to-grasp tasks in humans. However, these reports were unable to clearly show evidence of emerging neural activity from the planning (observation) phase - dominated by the vision cortices - to grasp execution - dominated by the motor cortices. In this study, we developed a novel vision-based grasping BCI platform that distinguishes different grip types (power and precision) through the phases of plan-to-grasp tasks using EEG signals. Using our platform and extracting features from Filter Bank Common Spatial Patterns (FBCSP), we show that frequency-band specific EEG contains discriminative spatial patterns present in both the observation and movement phases. Support Vector Machine (SVM) classification (power vs precision) yielded high accuracy percentages of 74% and 68% for the observation and movement phases in the alpha band, respectively.
Abstract:The bispectrum stands out as a revolutionary tool in frequency domain analysis, leaping the usual power spectrum by capturing crucial phase information between frequency components. In our innovative study, we have utilized the bispectrum to analyze and decode complex grasping movements, gathering EEG data from five human subjects. We put this data through its paces with three classifiers, focusing on both magnitude and phase-related features. The results highlight the bispectrum's incredible ability to delve into neural activity and differentiate between various grasping motions with the Support Vector Machine (SVM) classifier emerging as a standout performer. In binary classification, it achieved a remarkable 97\% accuracy in identifying power grasp, and in the more complex multiclass tasks, it maintained an impressive 94.93\% accuracy. This finding not only underscores the bispectrum's analytical strength but also showcases the SVM's exceptional capability in classification, opening new doors in our understanding of movement and neural dynamics.