Abstract:Accurate prediction of battery temperature rise is very essential for designing an efficient thermal management scheme. In this paper, machine learning (ML) based prediction of Vanadium Redox Flow Battery (VRFB) thermal behavior during charge-discharge operation has been demonstrated for the first time. Considering different currents with a specified electrolyte flow rate, the temperature of a kW scale VRFB system is studied through experiments. Three different ML algorithms; Linear Regression (LR), Support Vector Regression (SVR) and Extreme Gradient Boost (XGBoost) have been used for the prediction work. The training and validation of ML algorithms have been done by the practical dataset of a 1kW 6kWh VRFB storage under 40A, 45A, 50A and 60A charge-discharge currents and 10 L min-1 of flow rate. A comparative analysis among the ML algorithms is done in terms of performance metrics such as correlation coefficient (R2), mean absolute error (MAE) and root mean square error (RMSE). It is observed that XGBoost shows the highest accuracy in prediction of around 99%. The ML based prediction results obtained in this work can be very useful for controlling the VRFB temperature rise during operation and act as indicator for further development of an optimized thermal management system.
Abstract:The challenges in applications of solar energy lies in its intermittency and dependency on meteorological parameters such as; solar radiation, ambient temperature, rainfall, wind-speed etc., and many other physical parameters like dust accumulation etc. Hence, it is important to estimate the amount of solar photovoltaic (PV) power generation for a specific geographical location. Machine learning (ML) models have gained importance and are widely used for prediction of solar power plant performance. In this paper, the impact of weather parameters on solar PV power generation is estimated by several Ensemble ML (EML) models like Bagging, Boosting, Stacking, and Voting for the first time. The performance of chosen ML algorithms is validated by field dataset of a 10kWp solar PV power plant in Eastern India region. Furthermore, a complete test-bed framework has been designed for data mining as well as to select appropriate learning models. It also supports feature selection and reduction for dataset to reduce space and time complexity of the learning models. The results demonstrate greater prediction accuracy of around 96% for Stacking and Voting EML models. The proposed work is a generalized one and can be very useful for predicting the performance of large-scale solar PV power plants also.