Abstract:Rate-distortion optimization through neural networks has accomplished competitive results in compression efficiency and image quality. This learning-based approach seeks to minimize the compromise between compression rate and reconstructed image quality by automatically extracting and retaining crucial information, while discarding less critical details. A successful technique consists in introducing a deep hyperprior that operates within a 2-level nested latent variable model, enhancing compression by capturing complex data dependencies. This paper extends this concept by designing a generalized L-level nested generative model with a Markov chain structure. We demonstrate as L increases that a trainable prior is detrimental and explore a common dimensionality along the distinct latent variables to boost compression performance. As this structured framework can represent autoregressive coders, we outperform the hyperprior model and achieve state-of-the-art performance while reducing substantially the computational cost. Our experimental evaluation is performed on wind turbine scenarios to study its application on visual inspections
Abstract:With the relentless growth of the wind industry, there is an imperious need to design automatic data-driven solutions for wind turbine maintenance. As structural health monitoring mainly relies on visual inspections, the first stage in any automatic solution is to identify the blade region on the image. Thus, we propose a novel segmentation algorithm that strengthens the U-Net results by a tailored loss, which pools the focal loss with a contiguity regularization term. To attain top performing results, a set of additional steps are proposed to ensure a reliable, generic, robust and efficient algorithm. First, we leverage our prior knowledge on the images by filling the holes enclosed by temporarily-classified blade pixels and by the image boundaries. Subsequently, the mislead classified pixels are successfully amended by training an on-the-fly random forest. Our algorithm demonstrates its effectiveness reaching a non-trivial 97.39% of accuracy.