Abstract:Suboptimal color representation often hinders accurate image segmentation, yet many modern algorithms neglect this critical preprocessing step. This work presents a novel multidimensional nonlinear discriminant analysis algorithm, Colorspace Discriminant Analysis (CSDA), for improved segmentation. Extending Linear Discriminant Analysis into a deep learning context, CSDA customizes color representation by maximizing multidimensional signed inter-class separability while minimizing intra-class variability through a generalized discriminative loss. To ensure stable training, we introduce three alternative losses that enable end-to-end optimization of both the discriminative colorspace and segmentation process. Experiments on wind turbine blade data demonstrate significant accuracy gains, emphasizing the importance of tailored preprocessing in domain-specific segmentation.
Abstract:Linear discriminant analysis improves class separability but struggles with non-linearly separable data. To overcome this, we introduce Deep Discriminant Analysis (DDA), which directly optimizes the Fisher criterion utilizing deep networks. To ensure stable training and avoid computational instabilities, we incorporate signed between-class variance, bound outputs with a sigmoid function, and convert multiplicative relationships into additive ones. We present two stable DDA loss functions and augment them with a probability loss, resulting in Probabilistic DDA (PDDA). PDDA effectively minimizes class overlap in output distributions, producing highly confident predictions with reduced within-class variance. When applied to wind blade segmentation, PDDA showcases notable advances in performance and consistency, critical for wind energy maintenance. To our knowledge, this is the first application of DDA to image segmentation.
Abstract:Reliable operation of wind turbines requires frequent inspections, as even minor surface damages can degrade aerodynamic performance, reduce energy output, and accelerate blade wear. Central to automating these inspections is the accurate segmentation of turbine blades from visual data. This task is traditionally addressed through dense, pixel-wise deep learning models. However, such methods demand extensive annotated datasets, posing scalability challenges. In this work, we introduce an annotation-efficient segmentation approach that reframes the pixel-level task into a binary region classification problem. Image regions are generated using a fully unsupervised, interpretable Modular Adaptive Region Growing technique, guided by image-specific Adaptive Thresholding and enhanced by a Region Merging process that consolidates fragmented areas into coherent segments. To improve generalization and classification robustness, we introduce RegionMix, an augmentation strategy that synthesizes new training samples by combining distinct regions. Our framework demonstrates state-of-the-art segmentation accuracy and strong cross-site generalization by consistently segmenting turbine blades across distinct windfarms.




Abstract:Accurate segmentation of wind turbine blade (WTB) images is critical for effective assessments, as it directly influences the performance of automated damage detection systems. Despite advancements in large universal vision models, these models often underperform in domain-specific tasks like WTB segmentation. To address this, we extend Intrinsic LoRA for image segmentation, and propose a novel dual-space augmentation strategy that integrates both image-level and latent-space augmentations. The image-space augmentation is achieved through linear interpolation between image pairs, while the latent-space augmentation is accomplished by introducing a noise-based latent probabilistic model. Our approach significantly boosts segmentation accuracy, surpassing current state-of-the-art methods in WTB image segmentation.




Abstract:Rate-distortion optimization through neural networks has accomplished competitive results in compression efficiency and image quality. This learning-based approach seeks to minimize the compromise between compression rate and reconstructed image quality by automatically extracting and retaining crucial information, while discarding less critical details. A successful technique consists in introducing a deep hyperprior that operates within a 2-level nested latent variable model, enhancing compression by capturing complex data dependencies. This paper extends this concept by designing a generalized L-level nested generative model with a Markov chain structure. We demonstrate as L increases that a trainable prior is detrimental and explore a common dimensionality along the distinct latent variables to boost compression performance. As this structured framework can represent autoregressive coders, we outperform the hyperprior model and achieve state-of-the-art performance while reducing substantially the computational cost. Our experimental evaluation is performed on wind turbine scenarios to study its application on visual inspections




Abstract:With the relentless growth of the wind industry, there is an imperious need to design automatic data-driven solutions for wind turbine maintenance. As structural health monitoring mainly relies on visual inspections, the first stage in any automatic solution is to identify the blade region on the image. Thus, we propose a novel segmentation algorithm that strengthens the U-Net results by a tailored loss, which pools the focal loss with a contiguity regularization term. To attain top performing results, a set of additional steps are proposed to ensure a reliable, generic, robust and efficient algorithm. First, we leverage our prior knowledge on the images by filling the holes enclosed by temporarily-classified blade pixels and by the image boundaries. Subsequently, the mislead classified pixels are successfully amended by training an on-the-fly random forest. Our algorithm demonstrates its effectiveness reaching a non-trivial 97.39% of accuracy.