Abstract:Star scientists are highly influential researchers who have made significant contributions to their field, gained widespread recognition, and often attracted substantial research funding. They are critical for the advancement of science and innovation, and they have a significant influence on the transfer of knowledge and technology to industry. Identifying potential star scientists before their performance becomes outstanding is important for recruitment, collaboration, networking, or research funding decisions. Using machine learning techniques, this study proposes a model to predict star scientists in the field of artificial intelligence while highlighting features related to their success. Our results confirm that rising stars follow different patterns compared to their non-rising stars counterparts in almost all the early-career features. We also found that certain features such as gender and ethnic diversity play important roles in scientific collaboration and that they can significantly impact an author's career development and success. The most important features in predicting star scientists in the field of artificial intelligence were the number of articles, group discipline diversity, and weighted degree centrality. The proposed approach offers valuable insights for researchers, practitioners, and funding agencies interested in identifying and supporting talented researchers.
Abstract:The role of geographical proximity in facilitating inter-regional or inter-organizational collaborations has been studied thoroughly in recent years. However, the effect of geographical proximity on forming scientific collaborations at the individual level still needs to be addressed. Using publication data in the field of artificial intelligence from 2001 to 2019, in this work, the effect of geographical proximity on the likelihood of forming future scientific collaborations among researchers is studied. In addition, the interaction between geographical and network proximities is examined to see whether network proximity can substitute geographical proximity in encouraging long-distance scientific collaborations. Employing conventional and machine learning techniques, our results suggest that geographical distance impedes scientific collaboration at the individual level despite the tremendous improvements in transportation and communication technologies during recent decades. Moreover, our findings show that the effect of network proximity on the likelihood of scientific collaboration increases with geographical distance, implying that network proximity can act as a substitute for geographical proximity.
Abstract:Scientific collaboration in almost every discipline is mainly driven by the need of sharing knowledge, expertise, and pooled resources. Science is becoming more complex which has encouraged scientists to involve more in collaborative research projects in order to better address the challenges. As a highly interdisciplinary field with a rapidly evolving scientific landscape, artificial intelligence calls for researchers with special profiles covering a diverse set of skills and expertise. Understanding gender aspects of scientific collaboration is of paramount importance, especially in a field such as artificial intelligence that has been attracting large investments. Using social network analysis, natural language processing, and machine learning and focusing on artificial intelligence publications for the period from 2000 to 2019, in this work, we comprehensively investigated the effects of several driving factors on acquiring key positions in scientific collaboration networks through a gender lens. It was found that, regardless of gender, scientific performance in terms of quantity and impact plays a crucial in possessing the "social researcher" in the network. However, subtle differences were observed between female and male researchers in acquiring the "local influencer" role.
Abstract:Incorporating existing knowledge is vital for innovating, discovering, and generating new ideas. Knowledge production through research and invention is the key to scientific and technological development. As an emerging technology, nanotechnology has already proved its great potential for the global economy, attracting considerable federal investments. Canada is reported as one of the major players in producing nanotechnology research. In this paper, we focused on the main drivers of knowledge production and diffusion by analyzing Canadian nanotechnology researchers. We hypothesized that knowledge production in Canadian nanotechnology is influenced by three key proximity factors, namely cognitive, geographical, and collaborative. Using statistical analysis, social network analysis, and machine learning techniques we comprehensively assessed the influence of the proximity factors on academic knowledge production. Our results not only prove a significant impact of the three key proximity factors but also their predictive potential.