Abstract:Consumer-to-consumer (C2C) marketplaces pose distinct retrieval challenges: short, ambiguous queries; noisy, user-generated listings; and strict production constraints. This paper reports our experiment to build a domain-aware Japanese text-embedding approach to improve the quality of search at Mercari, Japan's largest C2C marketplace. We experimented with fine-tuning on purchase-driven query-title pairs, using role-specific prefixes to model query-item asymmetry. To meet production constraints, we apply Matryoshka Representation Learning to obtain compact, truncation-robust embeddings. Offline evaluation on historical search logs shows consistent gains over a strong generic encoder, with particularly large improvements when replacing PCA compression with Matryoshka truncation. A manual assessment further highlights better handling of proper nouns, marketplace-specific semantics, and term-importance alignment. Additionally, an initial online A/B test demonstrates statistically significant improvements in revenue per user and search-flow efficiency, with transaction frequency maintained. Results show that domain-aware embeddings improve relevance and efficiency at scale and form a practical foundation for richer LLM-era search experiences.


Abstract:This research explores the applicability of cross-lingual transfer learning from English to Japanese and Indonesian using the XLM-R pre-trained model. The results are compared with several previous works, either by models using a similar zero-shot approach or a fully-supervised approach, to provide an overview of the zero-shot transfer learning approach's capability using XLM-R in comparison with existing models. Our models achieve the best result in one Japanese dataset and comparable results in other datasets in Japanese and Indonesian languages without being trained using the target language. Furthermore, the results suggest that it is possible to train a multi-lingual model, instead of one model for each language, and achieve promising results.
Abstract:This paper analyses how traditional baseline metrics, such as BLEU and TER, and neural-based methods, such as BERTScore and COMET, score several NMT models performance on chat translation and how these metrics perform when compared to human-annotated scores. The results show that for ranking NMT models in chat translations, all metrics seem consistent in deciding which model outperforms the others. This implies that traditional baseline metrics, which are faster and simpler to use, can still be helpful. On the other hand, when it comes to better correlation with human judgment, neural-based metrics outperform traditional metrics, with COMET achieving the highest correlation with the human-annotated score on a chat translation. However, we show that even the best metric struggles when scoring English translations from sentences with anaphoric zero-pronoun in Japanese.
Abstract:This study investigates the performance of three popular tokenization tools: MeCab, Sudachi, and SentencePiece, when applied as a preprocessing step for sentiment-based text classification of Japanese texts. Using Term Frequency-Inverse Document Frequency (TF-IDF) vectorization, we evaluate two traditional machine learning classifiers: Multinomial Naive Bayes and Logistic Regression. The results reveal that Sudachi produces tokens closely aligned with dictionary definitions, while MeCab and SentencePiece demonstrate faster processing speeds. The combination of SentencePiece, TF-IDF, and Logistic Regression outperforms the other alternatives in terms of classification performance.