Abstract:The tremendous growth in smart devices has uplifted several security threats. One of the most prominent threats is malicious software also known as malware. Malware has the capability of corrupting a device and collapsing an entire network. Therefore, its early detection and mitigation are extremely important to avoid catastrophic effects. In this work, we came up with a solution for malware detection using state-of-the-art natural language processing (NLP) techniques. Our main focus is to provide a lightweight yet effective classifier for malware detection which can be used for heterogeneous devices, be it a resource constraint device or a resourceful machine. Our proposed model is tested on the benchmark data set with an accuracy and log loss score of 99.13 percent and 0.04 respectively.