Abstract:Writing, as an omnipresent form of human communication, permeates nearly every aspect of contemporary life. Consequently, inaccuracies or errors in written communication can lead to profound consequences, ranging from financial losses to potentially life-threatening situations. Spelling mistakes, among the most prevalent writing errors, are frequently encountered due to various factors. This research aims to identify and rectify diverse spelling errors in text using neural networks, specifically leveraging the Bidirectional Encoder Representations from Transformers (BERT) masked language model. To achieve this goal, we compiled a comprehensive dataset encompassing both non-real-word and real-word errors after categorizing different types of spelling mistakes. Subsequently, multiple pre-trained BERT models were employed. To ensure optimal performance in correcting misspelling errors, we propose a combined approach utilizing the BERT masked language model and Levenshtein distance. The results from our evaluation data demonstrate that the system presented herein exhibits remarkable capabilities in identifying and rectifying spelling mistakes, often surpassing existing systems tailored for the Persian language.